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Summary

This roadmap has been developed within the AutoTwin-PRE project and aims at assessing the
opportunities and challenges of creating and using digital twins for process industrial systems over
their life-cycle. The scope is therefore to provide a survey on mechanisms to generate models for
such system using machine learning (purely data-driven) and automated equation-based modeling. In
particular, we consider learning, validation, and updating of large-scale (i.e., plant-wide or plant-stage
but not component-wide) equation-based process models.

These aspects are discussed in relation to typical use-cases for the digital twins creating value both
on the operational and planning level for process industrial systems. These use cases are also connected
to the needed technologies and the maturity of those as given by the state of the art. Combining
all aspects, a way forward to enable automatic generation and updating is proposed, outlining the
required research and development activities.
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1 Introduction

Digital twins have gained widespread adoption as a tool for representing physical assets from many
industrial domains in a computer environment (Wright and Davidson, 2020). However, the definition
of a digital twin is not unique and may vary from application to application. For example, a digital
twin may be a 3D CAD model of a factory floor (Minos-Stensrud et al., 2018), a mechatronic model of
an assembly line (Oppelt et al., 2014; Rosen et al., 2019), a model of an aircraft (Liu et al., 2018),
or a simulation model for plant monitoring, control, and optimization (Santillin Martinez et al.,
2018a; Sierla et al., 2020). Boschert and Rosen (2016) refer to the vision of a digital twin as “[...] a
comprehensive physical and functional description of a component, product or system, which includes
more or less all information which could be useful in all — the current and subsequent — lifecycle
phases [...]” and point out the value of the simulation aspect of digital twins (Boschert and Rosen,
2016).

In order to reflect the real-life asset, the
digital twin needs to contain a model of the
asset as an integral part. The simulation
aspect of the digital twin relates to an execu-
tion of the model with the help of data from
the asset. This data can be both online data
but also historic data. Further the digital
twin should create value by providing action-
able insights to the user, which are either
answers to predefined questions (reflecting a
use-case) or, in a more flexible scenario, open
questions. In the latter case the digital twin
needs to comprise an intelligence in order to Fig. 1: Tllustration of a generic digital twin that takes
provide meaningful answers (Figure 1). asset data and user questions as inputs to provide

Consequently, a digital twin needs to be answers about the asset.
connected to its real-life counterpart and
adapt itself to track the life-cycle phases of its counterpart. Figure 2, shows a framework that supports

Fig. 2: A framework for digital twins considering the life-cycle phases of the physical asset.
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the generation, update, and operation of digital twins, where the digital twin not only is a model, but
also hosts several technologies that are needed for its description, like a blue print, for the modeling of
the physical asset, for the adaptation of the models, and for the deployment of it to online operation.
In addition, an integration layer is needed that combines the needed technologies to connect the digital
twin. The verticals relate to the actions that are taken by the digital twin, which is the replication
of the physical asset, the monitoring/validation of the embedded models, the update of the models
during the life-cycle phases of the real-life counterpart and the value creation, occurring during the
live operation of the digital twin.

In this roadmap, we focus on digital twins in the form of an eco-system of large-scale purpose-
oriented dynamic models for process industrial applications. A purpose-oriented dynamic model is
used for a specific purpose in the context of the operation and maintenance of the plant. Examples are
production planning, service and maintenance, or education and training. The general requirements
for such a model are that it captures the underlying physical process sufficiently well, that it ensures
observability of the variables of interest, and that it can be run sufficiently fast in relation to the
required timescale (Wright and Davidson, 2020). Furthermore, one should be able to generate the
model from a combination of static plant information such as pumping and instrumentation diagrams
(P&IDs) or component descriptions, and historic and current process measurement data (Sierla et al.,
2020).

Figure 3 illustrates how such a purpose-oriented model is generated. In particular, the description
layer consists of a set of static plant descriptions, ranging from P&IDs to GIS plant data and model
libraries (e.g., Modelica). This static information is the input to the modeling layer, where large-scale
models are automatically generated from the plant data. These models are too general to be used in
practice, and thus, the models have to be simplified and pruned for the particular purpose, which yields
the purpose-oriented model. This model may be further approximated, taking the added uncertainty
into account, before it can be calibrated (and validated) using actual plant data. At this point, the
model is ready to be used for the specific purpose defined by the use-case and the model maintenance
phase begins. During this phase, the model parameters have to be kept up to date to account for
environmental factors or equipment wear (re-calibration) and constantly be monitored to detect model
inaccuracies, or when the model is not valid anymore. This also includes aspects such as the detection
of operating points not covered by models.

The aim of this roadmap is twofold: First, we summarize the state-of-the-art of automatic model
generation, calibration, monitoring, and update for such scenarios, with a focus on the current modeling
and machine learning literature. Second, we identify the research directions of interest in order to
build a fully autonomous toolkit for the automatic generation, calibration, and updating of the
resulting purpose-oriented digital twins. Note that this also raises questions about interoperability,
communication, data management, and information access. These issues are clearly very important for
such a concept to work and it is assumed that such a system is in place.

The remainder of this report is organized as follows. The technologies, asset information, and tools
required to successfully implement such digital twins are discussed in Section 2. The specific use-cases
and requirements are discussed in Section 3 and the state-of-the-art survey is provided in Section 4.
Finally, Section 5 discusses the identified promising research directions with respect to the above aims.

2 Technologies, Information, and Tools

Engineering of digital twins has certain similarities to engineering of the plant that the digital twin
is replicating. While the digital twin is foreseen to facilitate planing, operation, maintenance, and
engineering of the plant over its life-cycle, the engineering might be still worth while. An improved
scenario is that engineering of the digital twin is guided and automated to a large degree, as well as
the ability to keep itself up to date with the real-life counterpart. Thereby, it is possible to create more
value with the digital twin.

Figure 3 illustrates a number of technologies, pieces of information, and tools that are needed to
generate and operate the digital twin connected to the real-life counterpart. The plant and process
information (orange boxes) needs to be available through a plant information system that can be
accessed by the digital twin, either based on a local database or remotely through an application
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Fig. 3: Technologies (blue) and information (orange/yellow) embedded in a digital twin along with the
tools (green) needed to create value during operation.

programming interface (API). In the latter case, the plant description system will be a front-end for
the user or the digital twin to interface to the complete plant information. Thus the plant information
system is a required technology that needs to be in place for the generation, update and operation
of digital twins. Furthermore, since the plant information system requires the input from a variety
of different data sources, interoperability between the different underlying systems becomes a key
requirement. Moreover, in Figure 3, there are two technologies indicated for the plant information
system which is the description verification and the description update. Those technologies are essential
for a plant information system but are assumed to be an integral part and will not be further discussed
within this roadmap.

The needed technologies to generate, update, and operate digital twins are given in Table 1. The
order of the technologies can also be seen as a work flow for implementing the AutoTwin approach.

Tab. 1: Required technologies.

ID Name Description
1  Plant informa- Hosts all information relating to the process, plant, or site and provides a
tion system complete and up to date description of all assets
2 Meta model Creates a representation of the structure and components’ characteristics
generation for the complete plant. Preferably model prototypes are included but not
parameterized.

3 Model instantia- Using the requirements generates an model instance that contains a set of
tion models for the components which are also interconnected. The instances
should fulfill the requirements and can be generated fully automated or

guiding the used.
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Tab. 1: Required technologies (continued).

ID Name Description

4  Purpose- Instance of a meta model that is fit for a purpose determined by the
oriented model engineering requirement and an associated use-case. The use-case will
essentially determine the characteristics that need to be fulfilled in order
to make the model useful. There is usually a good understanding of the

characteristic of the models that are supported in a use-case.

5  Calibration Using an objective the purpose oriented model is calibrated. Here the
objective is a mathematical formulation that can be assessed and is based
on the requirements. Such an objective aids in avoiding metrics (objectives)
for the calibration that have a weak relation to the value of the model.

6  Validation Similar to the calibration, the model is validated on a second set of data
using the same objective as used for the calibration. Standard metrics like
time series related quantification as the RMSE should be used with care.
The objective needs to be used further downstream in the monitoring of
the models as well.

7  Purpose ori- Integration of the different components of the digital twin and deploying
ented DT them for real time operation. The components are the purpose-oriented
model, the tools that operate on the model and the data for the use-case

and the monitoring and update mechanisms for the digital twin.

8  Monitoring The objectives from the calibration and the validation are used for the
monitoring. The monitoring will trigger update mechanisms either within
the DT or outside when a self-correction will not be successful.

9  Self-correction Online validation of the model using the monitoring mechanisms indicate
that the validation criteria is no longer fulfilled and the DT should update
the model on the basis of the online data. This has large similarities to
adaptive control approaches where the model is adapted in the closed loop
operation. The self-correction occurs locally within the DT.

10 Updating If the self-correction is not sufficient than the models need to be update
outside the DT resulting in a new generation of the DT. It might only
require a re-calibration as in 5, but might go all the way up to the meta
model generation.

11  Branching The currently operating DT need to be copied to a new branch for devel-
opment or analysis purposes.

Clearly, the purpose of a digital twin is to create value within a certain use-case. Depending on the
use-case there is more or less interaction with the user. In the case of simulation, the user monitors
the simulation and also interprets the outcome, while a soft sensor use-case means that the digital
twin operates fully autonomously. In the latter, the purpose oriented models need to be complemented
by tools. An example for that case is the well-known Kalman filter that estimates the internal states
of a process using a purpose-oriented model.

3 Use-cases and Requirements

A model-oriented way of working means that models become a central representation of the process
industrial plant that is operated, maintained, and managed over its life-cycle and need to stay up to
date all the time. This alignment of the virtual representation and the real-life counterpart enables the
use of more advanced and high performing methods to operate, optimize, control, monitor, maintain,
and predict on all levels of the industrial plant. It not only enables new use-cases to be realized, but
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Fig. 4: Principle sketch of a flotation process as discussed in Krivoshapkina et al. (2019).

also to become more efficient in terms of resource usage.

The digital twin is a natural extension of a model where, besides the replication of the real-life
system in terms of a model, user value creating functionalities along with mechanisms to monitor
and update the models are realized. The digital twin does further exhibit the ability to both operate
in parallel with the real life system but also in an offline setting. The latter enables typical what-if
analyses or investigations relating to different scenarios, which may have rare occurrence.

3.1 Relationship Between Use-cases and Purposes

Generally, the models are an abstract description of a system with a wide area of application. A
use-case can be supported by models but will put requirements on the models used. Essentially, there
is a purpose for the model and there can be several purposes for models within a use-case.

As an example, consider model-based control of the concentrate quality in a flotation process as
depicted in Figure 4. The use-case would then involve the estimation of the concentrate quality and
the subsequent control using actuators like agitator speed, feed, and air supply. Measurements on foam
properties, bubbling intensity as feed properties could then serve to provide the estimates. Clearly, the
model for estimating the concentrate quality has a very different purpose compared to the model for
controlling the quality.

In classical textbook examples the suggested models would often serve both purposes, which is
often not realistic or the model will have different levels of fidelity for the two purposes. Thus, using
several models with a dedicated purpose for the different parts of the use-case seems to be the right
way forward. As such the purpose might directly overlap with the use-case but generally there could
be multiple purposes associated with a use-case. A purpose-oriented model is then a model tailored for
a specific part of a use-case, which implies that a model for a certain purpose may be worthless for
another.

3.2 Use-cases with High Benefit Levels

Digital twins that relate to the dynamic behavior of a process industrial system and aid in its
understanding from a planning, operation and maintenance perspective can be organized in the
following five categories:

Process and production development,
process and production control,
production planning,

service and maintenance, and
education and training.

G W=

Each of these categories contains several use-cases having a positive impact on efficiency and efficacy
of the production system. Each of the use-cases in turn imposes requirements on the needed models,
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their properties, and purpose. An individual use-case might require several models with different
characteristics.
3.2.1 Process and Production Development

Process and production development aims at the steps resulting in a process or production and usually
have no real-life counterpart in place. Thus, the digital twin is not used in live operation or online in
this case, representing the first life-cycle phase of a process.

Tab. 2: Process and production development use-cases.

ID Use-case Related Description and value
use-case
la  Process or site de- A process or site is designed for a purpose. A DT can be
sign used for analysis during the design phase enabling better

design choices, consensus, and understanding within the
team or organization. The DT will also reduce subjectivity
and decisions made on the basis of personal opinion or
preference.

1b  Bottleneck analysis 3b The DT can be used to assess different operational scenarios
and thereby identify and aid in investigating bottlenecks.
A fully developed DT can be used to monitor bottlenecks
and also to identify them faster, which could become a
monitoring tool in real-life operation.
This use-case is related to what-if analysis.

lc  Investment deci- Investment decision depend on correct insights with re-
sion making gards to processes and production. A DT can lower the
risk for investments since the outcome could be quantified
beforehand. Insights are usually derived by performing
different studies for the investment and those studies can
be performed in shorter time and at a lower cost.

1d  Developing control  2c Control strategies should be developed using models repre-
strategies senting a process, which is rarely available during design.
Better performing strategy reduce start-up times and en-
able well performing processes right from the start. The
DT enables the development of control strategies with
high confidence on their performance. Tests and trials are
immensely reduced.
Relates to 2¢ and can be used be used for a running plant
as well.

3.2.2 Process and Production Control

Process and production control aims at keeping a process efficient over its life-cycle an production in
accordance with targets. Here the digital twin is supposed to operate in parallel with the process and
provid actionable insights.



3 Use-cases and Requirements

Tab. 3: Process and production control use-cases.

ID

Use-case

Related

use-case

Description and value

2a

2b

2c

2d

2e

Monitoring and
diagnostics

Prediction

Control

Real time decision
support for process
optimization

Quality and safety

4a, 2e

Here, the aim is to continuously monitor the process and
its operation. Deviations in the process can be detected
and related to adverse operating modes or faulty equip-
ment. Deviating process performance can be detected and
extended periods with sub-optimal performance can be
avoided. The performance can be monitored and related
to the theoretical optimum. High level control loop moni-
toring enables controller adaptation to avoid sub-optimal
settings.

Monitoring can also be used as a soft sensor providing new
data for control purposes.

Anomalies from unknown circumstances or events can trig-
ger process development and improved risk management.
Monitoring can also target quality from an objective per-
spective.

The aim of the DT is to predict the production in real-time
and one can test how different courses of action will affect
the predicted outcome (production). This enables better
choices for actions that relate to production efficiency and
efficacy.

The real-time engagement of the DT enables the devel-
opment of data-driven (machine-learning-based) and self-
learning control strategies. The focus is on resource effi-
ciency and renders increased utilization of raw material
and generates more income per time unit.

This use-case relates to 2b, but focus is on the operators
and to guide them in their decision making. When the DT
is sufficiently validated and guides to the correct actions,
autonomous decision making can be started. Thus the
DT takes its own decision independently. The use-case
enables a better decision making in complex situations and
the operators can focus their attention on more important
tasks.

A DT will limit the influence of personal opinions and
subjective decision making in production. The DT is also
able to perform repeatable in accordance with the best
possible line of action.

3.2.3 Production Planning

Production planning aims at a plant- or company-wide planning of the production such that an
economic optimum is achieved, taking possible constraints into account. A solution can start out from
a process or process section to then scale up to the whole plant and company levels. The digital twin
should then reflect the product in accordance with the scale and comprise models feasible for economic
optimization or plant wide production planning.
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Tab. 4: Production planning use-cases.

ID Use-case Related Description and value
use-case
3a  Holistic optimiza- Production is planned such that an economic optimum is
tion achieved on the chosen scale, and thereby limiting sub-
optimal production plans.
3b  Overall equipment 1la Overall equipment efficiency (OEE) depends not only on
efficiency analysis the performance of the plant while it is producing but also
when unit processes are loosing uptime. The weakest link
is usually the limiting process and reducing OEE. A digital
twin than can predict the OEE given different scenarios and
unit process availability can provide the needed insights to
prioritize the actions/improvements that matter most.
3¢ Optimize main- Related to OEE but more focusing on maintenance actions.

tenance from an
overall perspective

When and where to put effort on a plant-wide scale. The
digital twin needs to understand process degradation and
from that, predict degraded states to determine an effective
maintenance plan. In the long term multiple sites could
be considered and their interrelation, but that requires
multi-site models for the production system.

3.2.4 Service and Maintenance

Service and maintenance aims at efficient and in-time maintenance actions and providing the engineers
with information and support on the spot.

Tab. 5: Service and maintenance use-cases.

ID

Use-case

Related
use-case

Description and value

4a

4b

Predictive mainte-
nance

Virtual expert as-
sistance

2a

la

Condition-based maintenance where the degraded system
condition is foreseen with confidence enables the planning
of maintenance actions such that downtime of the asset is
minimized and aligned with planned maintenance windows
or non-sensitive production. It also facilitates a balanced
maintenance approach prolonging process life-cycle while
considering cost. On the basis of the both operational and
degradation related models in the DT, it is possible to state
an optimization problem that is continuously solved by the
DT and providing decision support for the engineers and
operators.

A DT with a descriptive model of the asset can reflect
the current state of condition with potential failure or de-
graded states. Combining virtual or augmented reality
technologies, a remote expert (from a supplier or simi-
lar) can support the maintenance or corrective action by
supervising local personnel.
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Fig. 5: Ilustration of the ore storage.

3.2.5 Education and Training

Education and training is essential for operators and engineers to understand the strategies of planning,
operation, and maintenance of a process, plant or site. Simulator-based training using a digital twin
enables not only the simulation, but also the assessment of the trainees’ performance. Moreover,
decided practices can be conveyed in a more realistic manner reducing misunderstandings and limiting
decision making on the basis of personal opinion or preference. An up to date DT for a specific site will
enable site specific training and the training will remain relevant. Actionable knowledge can thereby
be gained in a safe and secure way.

3.3 Mock-up Assessment and Readiness

As a specific example, we consider the material transportation to the refining stage including the ore
storage at Boliden’s Aitik mine. The ore storage is illustrated in Figure 5. The purpose of a mock-up
is to have a specific case to test our assumptions and concepts against. This limited scale pilot plant is
used to explore and characterize the pre-requisites and requirements.

While this plant can appear relatively simple, the use-case determines the complexity that is
encountered when it comes to models and availability of data. Below, two use-cases, how they would
be supported by an automatically generated digital twin, and their requirements are discussed: Soft
sensing with material tracking, as discussed in Appendix A, and predictive maintenance. The use-cases
are chosen to reflect two different operations and maintenance aspects.

1. Soft sensing of the material amount and the composition in the ore storage could be treated as
a local unit process problem, which is not highly interacting with the prior and later process
stages. Moreover, soft sensing is broad and rather unspecified as such and a clear requirement set
would be needed. As it is also pointed out in Appendix A, depending on the physical property
that needs to be estimated by the soft sensor, there is either an abundance of models and data
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available or none at all. This variability creates a problem in the automatic model generation
part of the digital twin, as there might be model prototypes available or not for the model
instantiation.

If no model prototypes are available then the automatic generation might fail, as data-driven
model generation is the only viable approach depending on labeled data sets and a large amount
of historic data. Even the historic data might be fragmented as soft sensing usually targets an
issue which has been observed but has not yet been targeted for a solution. An obvious hinder
here is the lack of plant information and problem related to data, information, and domain
knowledge which is usually represented in the plant information system.

Nevertheless, before fully automated model generation can be realized, a guided approach would
be the first step. It would support the user creation of the models rendering prototypes for later
similar problems. These models could then be both data-driven or physics-based.

2. Predictive maintenance of the mockup targets an increased availability of the transport and
storage system reducing the amount and time of unplanned stops. The models needed to
understand the degradation and condition of the assets involved in the transport can be both
data-driven models and physics-based models. A good example with the mockup process is the
BT2030 conveyor belt system which could be modelled purely on the basis of data that reflects
the operation, breakdown characteristics of components and exogenous data. From such data
and annotated maintenance information a degradation model could be learned that predicts
component condition and remaining useful life.

On the other hand, physics-based degradation models for drums, rollers, the belt, and the drive
system could be established on the basis of the mechanical stresses that occur. These models
could then be complemented by condition data that is acquired, for example from vibration
sensors, and operational data such as bulk feeding, belt speeds, mass distribution, or belt tension.
The calibrated models could then be used to estimate the remaining useful life and condition of
the assets in the system.

The issue here is the complexity in the derivation of the models and the availability of the needed
information that would allow an automated modeling approach. Again, guided modeling could
be a first step.

Both cases are affected by similar challenges, while the involved models are very different. The
joint challenge for a framework that supports the automated generation is the diversity of the use-cases
and how to support various modeling approaches with a variety of hyper-parameters. When models
are in place and validated for the targeted purpose, then the monitoring and update is somewhat more
straightforward. Nevertheless, the automation of that step is still depending on high quality data
and a decision making which is not negatively affected by the involved uncertainties, like unmodelled
disturbances and the question if the plant has changed or is temporarily affected by faults.

To conclude, the assessment shows that the readiness level is generally low for the needed technologies,
both from an organizational as well as from an information perspective.

4 State of the Art Review

4.1 Interoperability

Interoperability can be defined as the ability of (IT) systems to interact and collaborate. Hence, when
systems are required to work together, interoperability is central. Without standardized interoperability,
the solutions are at risk of continuously loosing functionality and requiring continuous updates due to
changing interfaces.

International standardization in interoperability has been ongoing for several decades. The oil
and gas industry, led by Norway and the USA, has done pioneering standardization work in the area
of industrial interoperability. This has lead to the International Standardisation Organisation (ISO)
standard ISO 15926 managed by the ISO technical committee (TC) ISO/TC 184/SC 4 (“Industrial
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Fig. 6: OIIE inter-enterprise interoperability architecture.

data”) (International Standardisation Organisation, 2018a). Currently, ISO 15926 includes the following
parts of relevance to AutoTwin:

Part 2: Data Model;

Part 4: Reference Data;

Part 7: Templates;

Part 8: Implementation in RDF;

Part 9: Triple Store (under development);

Part 10: Conformance Testing (under development).

One of the core parts in ISO 15926 is Part 4, reference data. It defines the common ground for the
information exchange between the different systems and their interoperability based on reference data
libraries, with a reference data service hosted by the POSC Caesar Association (PCA) (POSC Caesar
Association, 2021).

In addition to ISO 15926, which defines interoperability of asset data (plant data), the standard ISO
10303 (International Standardisation Organisation, 2014) defines interoperability standards for product
data. Furthermore, a combined standard to define the structure is given by the joint International
Electrotechnical Commission (IEC)-ISO standard IEC/ISO 81346 (International Standardisation
Organisation, 2018b).

Furthermore, the ISO/TS 18101 describes how to integrate a set of existing standards to achieve
systems-of-systems interoperability in the oil and gas, petrochemical, power generation, public utilities,
and other asset-intensive industries. It incorporates the use of a standardized connectivity architecture
and a use-case architecture to describe a supplier-neutral, open industrial digital ecosystem and
the interoperability requirements of standardized industry use-cases (International Standardisation
Organisation, 2019). The Open Industrial Interoperability Ecosystem (OIIE) provides an example
of the proposed, supplier-neutral industrial digital ecosystem. Key inter-enterprise relationships for
the process industry digital ecosystem have been modeled in standard use-cases as illustrated in
Figure 6 (OpenO&M, 2021).

In summary, to solve the problem of industry information exchange, standards and reference data
are required. In particular, international standards need to be adopted and integrated in our systems,
instead of re-inventing new solutions to the same problem.

4.2 Model Generation and Approximation

The first step in automatically generating a purpose-oriented DT is to generate a (large-scale) process
model from several sources of plant description. Such sources include static plant structure information,
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P&IDs, and component models. The latter may be based on anything ranging from first-principles
(white-box) models, hybrid (grey-box) models, or purely machine learning (e.g., deep learning) models.
This typically results in a very detailed process model. In fact, the resulting model may be unnecessarily
complex for the considered purpose. For example, the model could include a component that depends
on an infinite-dimensional partial differential equation model (e.g., from fluid dynamics), which makes
the model computationally demanding, even though that component does not contribute significantly to
the overall model. Hence, the automatically generated models can be reduced in order to approximate
the model to fit the particular purpose of the DT. Naturally, this model approximation step includes
the trade-off between simplifying the model structure and keeping the right amount of detail.

The field of automatic model generation and approximation from process and plant information
is not new. Significant progress has been made in the past and this is already used in industry to
some extent. Below follows a brief overview of these fields. Note that traditional learning of individual
component models (e.g., using machine learning or system identification) is not part of model generation
in the sense outline here and thus not discussed at this point.

4.2.1 Model Generation

The idea of automatic model generation is not new. However, it has only recently gained a significant
interest in industry. This trend is probably due to the increased use of model-based design technologies
and the emergence of DTs as a transformative technology (Shafto et al., 2012). In the vision of DT,
automatic model generation means that models are maintained over the entire life-cycle of the plant in
a cost-efficient way (Oppelt et al., 2014). Methods for automatic modeling include the model generation
from computer-aided design (CAD) diagrams using, for example, Matlab and Simulink (Hermansson
et al., 2018), using information mapping algorithms for automatic generation of models from 3D plant
diagrams and equipment information (Santillan Martinez et al., 2018a,b), or generation of Modelica
models from P&IDs (Cavron et al., 2017).

The abstract structure, behavior, properties, and requirements of a DT model can be defined using a
meta-model. Such meta-models can be developed using meta languages such as SysML, which is widely
used in various domains (Nikolaidou et al., 2016). Additionally, SysML has recently received many
efforts for automatic generation of models. In AutoTwin, meta-models are exploited for automatic
model generation by leveraging results of previous projects such as 1) AutoMod-PRE (funded by
the Swedish Agency for Innovation Systems; VINNOVA), 2) OPTi (funded by Horizon 2020), and
3) Arrowhead (funded by Horizon 2020).

4.2.2 Model Reduction and Approximation

A limitation of most traditional analysis, control, and optimization techniques is that they require the
availability of certain classes of models such as linear models with low order. This implies that models
generated dynamically cannot be directly exploited by such techniques due to their large complexity or
model order. Therefore, model reduction must precede the application of the aforementioned techniques.
These approximations have to achieve a desired accuracy with a minimum degree of complexity.

In the literature, there are two approaches to decrease the complexity of the models: model
simplification and model approximation (Upreti, 2017). In model simplification the following strategies
are typically used (Upreti, 2017; Surovtsova et al., 2012): 1) Linearization of non-linear models around
operating conditions, 2) scaling analysis to identify and resolve numerical weaknesses, and 3) separation
of time scales.

On the other hand, model approximation strategies include: 1) Dimensional analysis for reducing
the number of variables through representations based of dimensionless numbers such as Mach and
Reynolds (Szirtes, 2007), 2) parameter number reduction using model fitting methods such as the
MIMO ARX-Laguerre model for large-scale processes (Bouzrara et al., 2013), 3) model order reduction
such as interpolation-based methods (Antoulas et al., 2010) and Hs optimal model approximation,
4) multi-model approaches to replace unique nonlinear representations by a piece-wise combination of
linearized models around operating conditions (Elfelly et al., 2012), and 5) distillation of knowledge
by training a set of machine learning models and compressing them in a single model, such as neural
networks (Hinton et al., 2015).
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4.3 Model Calibration and Validation
4.3.1 Background

The parameters of automatically generated digital twin models need to be calibrated for the model to
reflect the processes’ operational state and operating point. This is achieved by using an estimation or
learning algorithm (Kay, 1993; Gelman et al., 2020; Van Trees et al., 2013), and thus, the problem can
be considered a parameter estimation problem. In the context of dynamic systems and control systems,
this is also part of system identification (Ljung, 1997; Pintelon and Schoukens, 2001; S6derstrom and
Stoica, 1989). Note, however, that system identification typically also includes design of input and
output signals for model identification and model identification itself, and not only estimation of the
model parameters.

In particular, a digital twin model is typically parametrized by a set of parameters 6. Then, to
calibrate the model, we have to determine the parameters 6 given a set of process input-output data
{tn, yn }2_, to enable purpose-oriented prediction for new input data u,. In general, we can distinguish
two approaches for estimating the parameters 6 and making predictions for new inputs u.:

1. Approaches that yield a point estimate of the parameters. This is typically the case when using
approaches from frequentist statistics such as the least squares or maximum likelihood methods,
but also when using parameter regularization, which can be seen as a Bayesian approach. Point
estimates are typically easy to implement and computationally efficient but provide no or only
limited information about parameter uncertainty. Thus, parameter uncertainty is not taken into
account when using the point estimates for prediction. Point estimates are obtained when using
optimization-based approaches.

2. Approaches that yield a posterior distribution over the possible parameter values. This is the
case when using a fully Bayesian approach and provides richer information about the parameter
values themselves, but also takes the parameter uncertainty into account when predicting new
outputs. This is at the expense of computational complexity.

4.3.2 Optimization-based Calibration

Methods that yield point estimates typically minimize a cost function J(u1.n,y1.n5;6) of the data
parametrized by the parameters 6, that is,

0 = argngn J(ur:n,y1:n30).

Closed form solutions to this type of minimization problems can only be found for a very limited
number of models (e.g., linear models). Instead, this often results in a numerical optimization problem,
which can be solved using traditional optimization methods such as gradient descent (Gustafsson, 2013),
the Gauss—Newton algorithm (Gustafsson, 2013), the Levenberg—Marquart algorithm (Levenberg, 1944;
Marquardt, 1963; Nocedal and Wright, 2006), or interior-point methods (Boyd and Vandenberghe,
2004). However, some of these methods require the analytical expressions for the Hessian matrix,
which may be difficult to obtain. Instead, so-called quasi-Newton methods such as the Broyden—
Fletcher—Goldfarb—Shanno (BFGS) method, may be used (Nocedal and Wright, 2006). Quasi-Newton
methods use the gradient evaluations of subsequent iterations to numerically estimate the Hessian,
which yields second-order optimization algorithms that only require the gradient. However, either type
of optimization approach can be implemented using automatic differentiation (Briicker et al., 2006;
Baydin et al., 2018), which does not require manual derivation of the gradient and Hessian matrix.

One particularly important issue when using numerical optimization methods to obtain point
estimates of the parameters is the problem of this kind of methods finding local minima of the cost
function. However, more recently, stochastic optimization methods have shown that they avoid getting
stuck in local minima (Bottou et al., 2018). The basic idea of stochastic optimization methods is to
exploit that the cost function J(u1.n,y1.5;0) in many cases can be written as an average of K terms,
that is,

K
1
J(u1:n, y1:n:0) = Ve § Jie (U, Yrs 0).
=1
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Here, uy, and yy denote subsets of size M of the whole input-output dataset ui.y and y1.x. (Note
that if M = 1, we have that K = N and each input-output pair contributes to the cost function
independently.) Then, instead of solving one large optimization problem, K smaller optimization
problems are solved sequentially, where the parameters #(*) at the kth iteration are a function of the
current term Ji (ug, yi; 0) as well as the previous’ iterations parameters, that is, Otk—1),

One of the most prominent stochastic optimization approaches is stochastic gradient descent (SGD),
which is the stochastic variant of the ordinary gradient descent method. SGD has successfully been
applied to many large-scale parameter estimation problems, for example in training of deep artificial
neural networks (Bottou, 2010; Bottou and Bousquet, 2011; Goodfellow et al., 2016). Successful
SGD-based methods are, for example, ADAM (Kingma and Ba, 2017) or AdaGrad (Duchi et al., 2011;
McMahan and Streeter, 2010).

The sequential nature of the parameter updating strategy of SGD-based methods implies two
things. First, the iterative procedure can be interpreted as the solution of an ordinary differential
equation (Barrett and Bherin, 2020). This means that this kind of methods could possibly benefit
of recent developments in probabilistic differential equation solvers, for example, Bosch et al. (2021);
Tronarp et al. (2021). Second, such algorithms can actually be interpreted as a (Kalman) filtering
problem (Chen et al., 2020). This implies that this approach can be extended to other approaches
of Kalman filtering for nonlinear systems such as unscented or cubature Kalman filtering (Julier
and Uhlmann, 2004; Arasaratnam and Haykin, 2009), or more general statistical linear regression
approaches (Garcia-Ferndndez et al., 2015; Arasaratnam et al., 2007). These methods are based
on so-called sigma-points, which do not require the analytical expression of the gradient of the cost
function, but use numerical integration instead (quadrature). This potentially yields more accurate
SGD-type of methods, at the expense of slightly increased computational complexity (which can be
alleviated by exploiting model structure, though; Hostettler and Sarkka (2019)).

From an automated model generation and calibration point of view, stochastic optimization methods
are the most promising. This mainly due to the fact that they are more robust towards local minima
and the fact that they already have shown great success in calibrating large-scale models in the form
of deep artificial neural networks.

Prediction is done by simply using the estimated parameter values in the predictive model. This
neglects possible uncertainty in the calibrated parameters and only takes uncertainty of the prediction
model into account.

4.3.3 Fully Bayesian Calibration

A simple form of obtaining Bayesian estimates of the parameters, that is, parameter estimates that are
not only based on the data itself but also on any (possibly vague) prior knowledge about the parameters,
is by using point estimate methods (i.e., optimization methods) together with cost functions that include
a regularizing term (see, e.g., Calvetti and Somersalo (2018)). This yields the maximum posteriori
(MAP) parameter estimate (Kay, 1993). While conceptually simple and easy to implement (the only
thing that changes is the cost function, which can be used together with a standard optimization
method), this does not leverage the full power of Bayesian methods.

Instead, the full power of Bayesian methods lies in their ability to estimate the posterior distribution

of the parameters, that is,

_ plyrn | 0)p(9)
PO 1) = p(y1:n)

where p(f) is the parameters prior distribution, p(y1.nx | 8) the likelihood (measurement model),
and p(y1.n) the marginal likelihood (or evidence) (Gelman et al., 2020). Estimating the posterior
distribution rather than a point estimate not only gives the most likely parameter values, but also the
uncertainty about the parameters. While conceptually simple, the posterior distribution can not be
calculated for most models. Instead, one often has to resort to either assumed density methods or
Monte-Carlo-based methods (simulation methods), see Gelman et al. (2020).

Assumed density methods are based on the assumption that the posterior density follows a certain
distribution, for example a Gaussian distribution or a Student’s ¢ distribution. This assumption may be
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valid or not, and entirely depends on the data model. Inference then amounts to estimating the param-
eters of the posterior distribution. Typical inference methods include the Laplace approximation and
integrated nested Laplace approximations (INLA; Rue et al. (2017)), expectation propagation (Minka,
2001), or posterior linearization based on statistical linear regression (Arasaratnam and Haykin, 2009;
Garcia-Fernandez et al., 2015), mainly for Gaussian assumed density methods. (Gaussian densities
are particularly interesting because they admit closed-form solutions when the prior is Gaussian and
the likelihood is linearized.) Furthermore, variational inference is used in cases when the posterior is
assumed to factorize over the different parameters (Blei et al., 2017; Zhang et al., 2019), that is,

M
p(0 | y1n) = H p(Om [ y1:n)-

m=1

This is particularly useful when the different parameters have different characteristics and need to be
described by different (assumed) posterior distributions.

Monte Carlo methods on the other hand approximate the posterior density not analytically, but by
simulation. That is, instead of imposing an assumed posterior density onto the model, the posterior
density is approximated by generating (weighted) samples that are (approximately) distributed
according to the posterior distribution (Andrieu et al., 2003; Geyer, 2011). This can be achieved by
using relatively simple methods such as rejection or importance sampling, or more advanced methods
such as Gibbs sampling or the Metropolis—Hastings algorithm (Gelman et al., 2020; Geyer, 2011). Of
these, the Metropolis—Hastings algorithm can be widely employed, but great care has to be taken in
the choice of the algorithms parameters.

All these approaches can be applied to the problem of high-dimensional models for digital twins.
From a practical perspective, assumed density methods are the most practical ones. They might also
be sufficient in capturing the problem’s associated uncertainty.

Prediction based on a Bayesian posterior estimate is achieved by marginalizing with respect to
the parameters. This yields a prediction which also takes the uncertainty of the parameter estimate,
that is, the uncertainty of the calibration into account. This in turn gives a better estimate of the
uncertainty of the prediction, compared to point-estimation methods.

4.3.4 Re-calibration

The system’s parameters will inevitably change over time, for example due to varying external conditions
or component wear, which requires re-calibration of the parameters. Re-calibration can be achieved in
several ways. First, current parameter estimates can be discarded entirely, and a new calibration can
be done using one of the approaches discussed above. This is mainly useful in scenarios where large
and significant parameter variations can be expected. Otherwise, useful information form the previous
calibration is discarded, which increases the uncertainty of the calibration.

Second, the current (outdated) parameter (or posterior) estimate can be used as a regularizing
term for the updated parameters. This approach can be developed further such as to actually
model the dynamics of the parameters at a relatively slow time-scale, for example as a random walk.
Then, sequential Bayesian estimation methods such as filters can be used, which yields an efficient
system (Sarkka, 2013). For large-scale systems, assumed density methods (e.g., Gaussian filters) are
most directly applicable. From a research perspective, research in high-dimensional sequential Monte
Carlo methods is of interest in this context, see, for example, Septier and Peters (2015, 2016); Naesseth
et al. (2019).

4.3.5 Validation

To quantify how well a model is calibrated, the calibration has to be validated. Formally, the basic idea
of validation is to analyze the posterior predictive power of a model, that is, to check the capability of a
calibrated model to make predictions about other input data. This is achieved by using a dataset that is
different from the calibration (or training) data set. The validation dataset may be an entirely different
dataset, or a subset of the whole calibration data (cross-validation) (Hastie et al., 2017; Gelman
et al., 2020). The former approach ensures a clear separation between calibration and validation, but
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gives only limited insight into the actual quality of the calibration quality as the validation is only
performed on a single validation dataset, which does not provide any uncertainty information about
the calibration.

Cross-validation can be divided into two approaches (Hastie et al., 2017; Gelman et al., 2020): Leave-
p-out cross-validation and k-fold cross-validation. Leave-p-out cross-validation uses all permutations
of the dataset where p datapoints are used for validation and the remaining datapoints for calibration.
This is computationally expensive as there are a large number of ways to partition the dataset. A
somewhat simplified version (leave-one-out cross-validation; LOO cross-validation) uses p = 1, that is,
one datapoint is used for validation and the remaining for calibration. k-fold cross-validation on the
other hand divides the dataset into k equally sized subsets. Then, k — 1 subsets are used for calibration
and 1 subset is used for validation. This is repeated for all combinations of calibration and validation
subsets (i.e., k times) and the results are averaged over the individual runs to obtain the average
validation performance and uncertainty. These methods are well-established. However, recent research
related to the large-scale digital twin models considered in this project includes the particularities of
cross-validation for large data (Magnusson et al., 2019, 2020) or uncertainty quantification in model
comparison (Sivula et al., 2020).

In the context of large-scale digital twins, a major problem lies in the validation objective: A model
validated using these validation approaches might yield poor validation performance but still be useful
in practice. Hence, the challenge here is to formulate proper requirements and validation criteria to
ensure that the model is fit for the particular purpose. This is not straight-forward and should be
investigated.

4.4 Model Monitoring and Update

To ensure the safety and reliability of the systems, prognostic and health monitoring (PHM) is essential.
The aims of PHM are as follows (Booyse et al., 2020):

e Detection of anomalous or faulty behavior of the system based on its intrinsic degradation
mechanism and operating data,

e diagnostics as differentiating various types of anomalous events or failure modes, and

e prognostics, that is, providing a measure of system health.

Early detection and diagnosis of process faults can help to avoid progressing abnormal events and
can reduce productivity loss. In general, the process faults comprise sensor faults, actuator faults,
and the faults that can occur in the components or parameters of the plant dynamics. Parameter
failures arise when a disturbance enters the process through one or more exogenous variables, for
example, a change in the concentration of the reactant from its normal or steady state value in a reactor
feed (Venkatasubramanian et al., 2003). Sensor faults (e.g., offset faults and drift faults) typically
manifest as additive faults, while actuator faults (e.g., clogging faults and constant gain deviations)
manifest as multiplicative faults (He et al., 2019). The PHM system should detect and diagnose
faulty events quickly. This characteristic can make it sensitive to high frequency influences and noise.
This system should be robust to various noise and uncertainties. Then, there is a trade-off between
robustness and performance. PHM strategies have to distinguish between different failures and faults
and identify their source. Furthermore, the ability to identify multiple faults is an important but
difficult requirement due to the interacting nature of most faults (Venkatasubramanian et al., 2003).
The application of DTs in PHM technology consists mainly of condition monitoring, fault diagnosis
and prognosis, and remaining useful life prediction (Yu et al., 2021).

Methods for monitoring and fault diagnosis and prognosis can be classified into data-driven, physics-
based, and hybrid methods. Data-driven methods rely on statistical models and are including various
approaches, such as Bayasian network (Yu et al., 2021), generalized likelihood ratio (GLR) (He et al.,
2019), principal component analysis (PCA), partial least squares (PLS) (Ding et al., 2011; Yin et al.,
2012), fisher discriminant analysis (FDA) and support vector machine (SVM) (Severson et al., 2016),
general soft sensor technologies (Kadlec et al., 2009) and machine learning methods (Booyse et al.,
2020; Xu et al., 2019; Pan et al., 2019; Lu et al., 2018; Zhang and Zhao, 2017). Physics-based methods
rely on the understanding of the system and the degradation mechanisms and may offer a greater
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degree of interpretability, reliability, and predictive capability (Magargle et al., 2017; Aivaliotis et al.,
2019; Johansen and Nejad, 2019). Considering uncertainty, incompleteness of data and different
data distribution in data-driven methods as well as high computational complexity of physics-based
approaches in large-scale systems, hybrid methods formed by the combination of the data-driven and
physics-based approaches can obtain a more robust health assessment of the system and provide more
robust predictions and deal with computational issues (Cubillo et al., 2016).

To ensure that the DT can accurately track the state of the physical system in real-time, it
is important to update the DT. Model updating can be studied from various perspectives such as
soft sensor adaptation (Kadlec et al., 2011), concept drift adaptation (Gama et al., 2014), state
estimation (Maasoumy et al., 2013), adaptive control (Dougherty and Cooper, 2003), and disturbance
model adaptation (Wang et al., 2012).

In AutoTwin, DTs need to reflect the state of the asset with the required application accuracy
throughout their life-cycle. Thus, it is essential to continuously update the DT to meet the changing
needs and improve performance in terms of efficiency, flexibility, and reliability. DT updates can be
done manually by a user (e.g., by replacing altered components with updated ones) or automatically.
The automatic approach has the advantage that the validity of the DT is not dependent on the user’s
knowledge of the process, but on the ability of the DT for self-adaptation (see Tomforde et al. (2014)).

Automatic DT updates can be triggered by several events such as physical component wear, change
of components, process reconfiguration, or as a response to extrinsic parameters. Changes in the plant
can be identified by the monitoring concept. Monitoring enables the identification of these changes by
continuously comparing the output data of DT with those of the real plant and allows to validate that
the plant in its actual status still meets all requirements (Zipper et al., 2018). Furthermore, periodic
model validation is an essential part of any automatic DT updating scheme in order to validate whether
the DT still captures process behaviour accurately (runtime verification; Bu et al. (2011)).

Successful automatic DT updates rely upon the following key aspects: 1) Scope of the update,
2) type of update, and 3) computational paradigm. With respect to the scope of the update, updates
can be performed on several layers of the DT, such as component and model parameter updates, or a
top-level update in DT structure (Musil et al., 2017). Excessive use of model updates may result in
insignificant performance changes (Lee, 2015). With respect to the type of the update, self-adaptation
triggered by an external factor such as wear or component change is reactive in nature (Moreno et al.,
2015; Ditzler et al., 2015). In contrast, passive adaptation does not require the detection of triggering
events. Instead, passive adaptation continuously updates the DT models based on the observed inputs
(e.g., sensory data) using methods such as online parameter estimation for component models (Haykin,
2013; Kokkala et al., 2016). Furthermore, the DT update methodology should also consider a horizon
of validity of the DT in order to be usable for predictions.

Finally, with respect to the computational paradigm, there is a strong dependency on the use case.
Some use cases (e.g., simulation or what-if analysis) require a centralized DT. In such a scenario, all
the components of the DT are centrally managed. This also implies that updates of the DT should
be managed and performed centrally, with access to all of the DT’s components, models, and data.
For other use cases (e.g., monitoring and fault detection or predictive maintenance), however, the DT
might be decentralized with its components and models being managed in a distributed manner (e.g.,
by subsystems). In this case, even the DT update can be performed decentralized (e.g., using edge
computing) and the updated components can immediately be used by the corresponding tool chains
(see, e.g., McMahan et al. (2017); Stankovic et al. (2011)).

Technical solutions, platforms, and software, in particular, should enable the continuous adaption
and evolution of DTs over the long term. There are several methods for updating DTs. The approach
applied to update the model depends on the size of the data used for updating and the number of
parameters that should be updated. Some of the most common approaches applied to update the
models are based on machine learning algorithms, such as optimal trees (Kapteyn et al., 2020b),
probabilistic learning on manifolds (Ghanem et al., 2020), or Gaussian processes (Chakraborty and
Adhikari, 2021). Due to the modeling ability of artificial neural networks (ANN), they have served as
a basic tool for various applications in the process industry. In the context of DTs, adaptive ANNs are
used to design the DTs and adapt them over time through continuous learning (Reed et al., 2021).
Moreover, Bayesian networks can be employed to create and update the DTs. In these networks, the
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parameters are updated in some ways, for example, the prior known parameters can be updated in
real-time by a Gaussian particle filter, while Dirichlet process mixture models can be applied to update
the unknown parameters, making the model have the ability to self-updating the structure (Yu et al.,
2021).

Bayesian algorithms are also used for online adaption of DTs and soft sensors through an automatic
mechanism of bias updating based on continuous monitoring of the mean and standard deviation of
the prediction error (Sangoi et al., 2021). A combination of Bayesian state estimation and a library
of component-based models can be applied to create and update data-driven physics-based digital
twins (Kapteyn et al., 2020a). The component-based models scale to large and complex assets, while
the construction of a model library enables flexible and expressive model adaptation via parametric
modification and component replacement.

Furthermore, updating the DTs can be regarded as a solution to an optimization problem that
minimizes the difference between the outputs of the DT and the physical system. The optimization
algorithms face great challenges to meet the real-time requirements in such cases. If the number
of parameters is small, then some optimization approaches such as methods based on parameter
sensitivity analysis (Wang et al., 2019) and differential evolution for parameter estimation in a sliding
window (Ohenoja et al., 2018; Nikula et al., 2020) may be appropriate. When a system contains
high-dimensional variables, large computational overheads and memory issues could lead to inefficient
results. In these situations, suitable approaches include decomposing the plant into meaningful blocks
associated with a physical unit and using adaptive identification methods for every block (He et al.,
2019), model order reduction (Kapteyn et al., 2020b; Chinesta et al., 2020; Quarteroni and Rozza,
2014; Chinesta et al., 2011), or using surrogate models or meta models (Yang et al., 2016; Nikula et al.,
2020; Chakraborty et al., 2021).

4.5 Related Projects and Products
4.5.1 Research Projects

Table 6 lists research projects related to AutoTwin as well as their similarities and differences.

Tab. 6: Related research projects.

Project Description Similarities Differences
DigitalTWIN  Develops a toolset for Development of tools and Focus is entirely on build-
(se commerce  managing building lifecy- integration workflow. ing construction and life-
GmbH, 2021)  cles. cycle.
DigiTwins Develops a knowledge- Stress on learning mod- Focuses on the human
(DigiTwins, base and tools to model els from data and preven- body as a bio-mechanical
2021) and predict health related  tive/predictive based in- process.

indicators in humans. tervention.
DigiTwin Platform for stakeholders Too limited information The use-case (cargo
(Aalto Uni- interested in digital twins available to make a quali- crane) is not too realistic

versity, 2021)

DigiTwin
(DigiTwin
Project, 2021)

to connect with research
and promote business op-
portunities.

Develops a design
methodology for digital
twins of dynamic systems
includeing uncertainty.

fied judgement.

Design methodology, dy-
namic systems.

and overly simplified.

Does not consider the
complete lifecycle.
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Tab. 6: Related research projects (continued).

Project Description Similarities Differences
Infrastructure  Develops digital twins of Asset tracking, predic- Specific use case, civil
Digital Twins infrastructure assets (e.g., tive maintenance, AR for engineering application.
(Cambridge campuses, national infras- maintenance and inspec- Does not consider the
University, tructure). tion. whole lifecycle.

2021)

MAYA Develops simulation Considers the whole life- Focuses on manufacturing

(MAYA, 2021)

Twin Control
(Twin Control,
2021)

methodologies and tools
for the design, engineer-
ing and management of
factories.

Develops a new concept
for machine tool and ma-
chining process perfor-
mance simulation.

cycle, including reconfigu-
ration and decommission-
ing.

Includes the whole lifecy-
cle: Design, validate, and
update.

industry and not on con-
tinuous production.

Focuses on the simulation
aspect and on machine
tools (e.g., CNC).

4.5.2 Commercial Products

Table 7 below shows a list of the most relevant commercial products.

Tab. 7: Commercial digital twin solutions.

Product

Description

Opportunities

Comos
(Siemens AG,
2021a)

PlantSight
(Siemens AG,
2021b)

Sight Machine
(SightMachine,
2021)

Uniformance
(Honeywell,
2021a) &
Unisim (Hon-
eywell, 2021b)

Azure Digital
Twins (Mi-
crosoft Inc.,
2021)

Sitebase (Site-
base AB, 2021)

Plant engineering tool

Complete digital twins for the physical
plant as well as control systems and
other components.

System for higher-level digital twins for
plant monitoring of production lines
and factories.

Process modelling for steady-state and
dynamic models for plant design, per-
formance monitoring, troubleshooting,
business planning, and asset manage-
ment.

A platform for digital twins of assets,
places, and business processes

A plant information system with a va-
riety of APIs to other tools, like for
example AutoCAD.

Focused on low fidelity I/O simulations.
In-house simulation software (SIMIT).
Low or no focus/support for online dig-
ital twins.

Still in early stages. AutoTWIN goes
further in automated model generation,
model updates and self-awareness.

Mainly focused on manufacturing in-
dustry

No link/semi-automatic extraction of
3rd party information system data via
standard interfaces. No autonomy.

Originates from smart buildings, cur-
rently still immature as only in a beta
version. No autonomy.

Lacks the management of models and
tools needed for a digital twin. No
features to generate digital twins.




5 Research and Development Roadmap 22

5 Research and Development Roadmap

On the basis of the use-cases, the needed technologies, and the state of the art, a way forward to
achieve automated generation and update of digital twins can be sketched out. The way forward
looks at the needed technologies from the perspective of technology readiness and what research and
development is still required together with the complexity of the task ahead.

Note that, as already pointed out before, access to complete data and plant information are essential
for any of the modeling approaches that are targeted by AutoTwin. The information does not need to
be stored in a centralized way, but needs to be accessible for the technologies. During the mock-up
study it was confirmed that complete plant information is a challenge onward and also a limiting factor
to achieve automated modeling for digital twins. The development, deployment, and usage of a plant
information system is complex, both from a technical and organizational perspective, and also hard to
foresee when it is in place. There are also commercial solutions available which at least partly provide
the needed features. It is therefore assumed that a plant information system is available and that the
developed technologies are setting up requirements for such a plant information system.

There are also numerous ongoing research, development, and standardization activities that focus
on plant information systems and interoperability, and will thus not be focused on here.

5.1 Activities

From the gap analysis following the state-of-the-art analysis and the insights created by the mock-up
study (Appendix A), the research and development activities in Table 8 should be prioritized. Each of
the activities in itself renders methods and tool capable of a certain degree of autonomy, meaning the
degree of supervision by the user, the guidance that the user receives in the engineering task, or the
trust that is gained to allow full autonomy differs.

Tab. 8: Proposed research and development activities.

Activity TRL Priority Description

1 Meta model generation 67 Medium  Automated or guided model generation can be
based on the further development of methods
and tools that are available. While there are un-
solved research challenges and technical solution
could still be achieved for industrial use. There
is a high dependency on a plant information
system. The result will be a meta model for the
complete plant.

2 Model instantiation and 4-5 Medium  The model instantiation can be part of the au-
purpose oriented model tomated model generation and can be hard to
generation distinguish given the currently available tools.

The generation of the purpose oriented models
is a quite open field of investigation and the
automation might be difficult and is use-case
dependent. A guided approach in a first stage
is advised, but will also be use-case dependent.
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Tab. 8: Proposed research and development activities (continued).

Activity TRL Priority Description
3 Calibration and valida-  4-5 High Calibration and validation depend on the under-
tion lying objective that is used for assessment of the

performance. The choices are not clear and how
the use-case and the requirements are correctly
reflected in the assessment. Also the choice of
data and to understand the information theo-
retic aspects of the calibration and validation
process require research activities, i.e. when it
comes to large scale processes.

4 Monitoring 4-5 High The monitoring can be further using the objec-
tives from the validation and calibration as it
will be solving the detection, isolation and classi-
fication problem. Monitoring need to be working
in an online context and fully autonomous to
support the self-correction and update of the
digital twin, by triggering actions within the
digital twin but also outside the digital twin.

5 Self-correction and up-  4-5 High Self-correction and update mechanisms in an
date autonomous way are a prerequisite for the value
creation of a digital twin in the long run. It is
important to trigger these activities in a proper

way and also assess the success of an update.

5.2 Roadmap

The research activities themselves do not provide insights on how the vision of the framework depicted
in Figure 2 can be achieved. The technologies view in Figure 3 provides a decomposition where the
individual components can be realized by manual, guided and automated engineering efforts and a
combination of those, enabling a development roadmap focusing on continuous value creation. For
each of the technologies, three levels of autonomy are therefore foreseen:

Manual means that the engineering efforts are conducted in a manual fashion. For online
technologies it means that manual monitoring, decision making, and updating are
realized,

Guided means that the engineering efforts are supported by tools that perform analysis and

provide insights that guide the engineer in their efforts to achieve good results. For
online technologies it means that the monitoring is automated to some degree and
that decision support is provided.

Autonomous means that the engineering efforts are fully automated and eventual decision making
is done by the technologies themselves. Both offline and online technologies should
exhibit the same behavior with no need for user interaction.

Thus, the actions 1 and 2 can be performed independently of 3-5 as the latter could be operated
on manually engineered digital twins and their embedded models, minimizing risks for long research
activities with little industrial benefits. Further, the basic idea of the roadmap is a bottom-up approach,
meaning the technologies needed for the online operation of DTs over a longer time period need to be
addressed first and need to achieve autonomy first.

The outset for the roadmap is now the availability of a plant information system and manual
engineering efforts representing the needed technologies and extends from there as follows.
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Step |

Step I

Step 11

Step IV

Step V

Step VI

Guided Monitoring and Validation

Systematic description of validation criteria for models on the basis of use-case require-
ments will enable automated assessment of models where the user is guided in the
selection of data and interpretation of the outcomes. The remaining technologies will
be conducted in manual engineering mode for both online and offline.

Autonomous Monitoring and Self-Correction

The monitoring will then be further matured to allow for an autonomous approach
that will also capture the ability to update the local models while in operation. The
initial DT is manually engineered such that the models are possible to be used in
self-correction. The requirements on the models to enable autonomous self-correction
will be investigated and established. This step also includes the validation of purpose
oriented models.

Guided Calibration and Update

The monitoring will generate triggers for update mechanisms not possible to accommo-
date by the self-correction. The algorithms used in the self-correction will serve as a
foundation to create update and calibration algorithms that guide the user. There will
be numerous hyper-parameters that need to be set and data selection for the update
and calibration need to be performed. The experience from the engineering in setting
these parameters will enable the development of autonomous versions of these algo-
rithms. The prerequisites for methodologies feasible for both, a guided or autonomous
operation, will be investigated and established. The applicable methodologies might
set up requirements on the modeling paradigms that are used. The scope will be on
purpose-oriented models and it needs to be investigated to what degree the approach
can become generic.

Autonomous Calibration and Update

The algorithms will be further developed to allow for autonomy of the calibration and
update for purpose oriented models. Autonomy might only be achieved for certain
purpose oriented models which need to be investigated and clarified. This step requires
the involvement of the user to understand the requirements for autonomy and to build
trust in the technology.

Guided Model Instantiation

The technology relates to activity 2 and can be developed in parallel with the prior
steps. Purpose-oriented model generation depends on the use case and the requirements
on the models. Similarly, the model instantiation depends on the plant information
system and the availability of modeling information. The user will be provided with
guidance on which information is needed for the model generation and instantiation
and will be guided through the process of hyper-parameter selection. The resulting
models need to be compatible with the calibration and validation. The objectives
for the calibration and validation are also prepared here and the user is guided. It
need to be investigated which model types and paradigms can be used in the model
instantiation and generation.

Guided Meta Model Generation

Similar to the model instantiation a guided approach for the model generation is a first
step, where the user interacts with the technology and in part performs the engineering
efforts manually. The base of the development is on available technologies which solve
the problem in part or for specific case studies. The resulting learnings on requirements
and scope aid in the further development to autonomy. In the guided approach the user
will be provided with choices to generate the meta model of a process of varying size
and complexity. The principles to engineer the requirements for the model generation
will be investigated and established.
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Step VII Autonomous meta model generation and model instantiation

The requirements engineering step will be further developed to result in requirements
feasible for the meta model generation. The requirements remain a manual engineering
effort as those are essential along the complete technology chain. The guided algorithms
will be further developed to achieve autonomy where the setting of the hyper-parameters
for the algorithms is no longer needed. Again, the trust of the user in the technology
and its explainability need to be thoroughly investigated.

Step VIII Integrated technologies

While the requirements are the key to the interoperability of the technologies, the
integration might impose additional requirements on the information that is generated
within the technologies and exchanged between. The integrated framework need to be
benchmarked and validated, although the individual technologies have been validated
already.

During all steps of the roadmap, benchmarking and validation of the resulting technologies need
to accompany the research and development activities. Pilot studies should specifically focus on the
value creation of the technologies and the quantification of the increase in availability of digital twins.
Life-cycle aspects are essential to be investigated.
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